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Generalized field equations in general relativity 
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t Department of Mathematics, University of New Brunswick, Fredericton, 
N.B., Canada 
$ Department of Mathematics, University of Exeter, UK 
IMS. received 30th March 1971 

Abstract. Generalizations of Einstein’s field equations in general relativity 
are derived by considering variational principles in which the components of 
an ennuple, or tetrad, are the quantities which undergo variation. The con- 
servation law for the field equations is established and the weak field 
approximations discussed. The equations are solved by the method developed 
in a previous article. Many solutions are obtained, all of which are inferior to 
the Schwarzschild solution. 

1. Introduction 
In  a previous article (Tupper and Phillips 1970, to be referred to as I), we have 

suggested a method of solving alternative field equations in general relativity based 
on the use of ennuple or tetrad vectors. The  particular field equations which were 
the subject of that investigation were those proposed by Kilmister (1967) in an attempt 
to overcome some of the unsatisfactory features of the Schwarzschild solution, notably 
the lack of agreement with Mach’s Principle. It was shown in I that the two solutions 
found for Kilmister’s equations were far less satisfactory than the Schwarzschild 
solution. However Kilmister’s choice of equations was somewhat arbitrary and in this 
article we propose to derive field equations for the ennuple vectors from variational 
principles and to use the methods of I to find solutions. These field equations will 
be generalized field equations, rather than alternatives, since the Einstein field equa- 
tions occur as a particular case. 

Field equations of this type were the subject of an investigation by Pellegrini 
and Plebanski (1963, to be referred to as PP) but their main concern was to obtain 
Einstein’s field equations, and hence the Schwarzschild solution, together with 
additional conditions which would enable them to find a satisfactory energy-momen- 
tum complex. Here we are concerned with the problem of finding solutions to the 
generalized field equations other than the Schwarzschild solution in the hope that 
one, at least, will have the good points of the Schwarzschild solution, that is, agreement 
with observation, with none of its difficulties an mentioned in I. 

In  fact, all the solutions that we find to these generalized field equations are inferior 
to the Schwarzschild solution, although they have a number of interesting features. 
This is disappointing but we feel that this investigation is necessary if one takes the 
point of view, expressed in PP and by Plebanski (1962), that the ennuple, rather than 
the metric tensor, should be regarded as the basic physical entity. If this view is 
accepted then there is no reason to assume that the Einstein field equations are neces- 
sarily superior to any other field equations to be considered here. The  final choice of 
field equations may have to be based on the suitability of the solutions found to the 
various field equations. If this is so then the present investigation is inconclusive 
since only a restricted number of solutions have been found so far. 

In  5 2 we establish two theorems concerning the divergence of tensors obtained 
from variational principles in which the ennuple components hia are the quantities 
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to be varied and in $ 3 the variational principle technique is used to find the general- 
ized field equations. A discussion of the weak field approximations is given in $4.  
I n  $ 5  the field equations are solved in certain particular cases using the method of 
solution devised in I, and in $ 6  the solutions are discussed. 

Throughout this article greek letters are tensor suffixes and latin letters are 
ennuple, or tetrad, suffixes. Both types of suffix take the values 1, 2, 3, 4. 

The  notation used in I is as follows: The  ennuple hia and its inverse ht, satisfy 

ht'hju = Tij 
hiahig = gaa 

where r l i j  is the Minkowski metric tensor (- 1, - 1, - 1, 1) which is used to raise 
and lower ennuple suffixes. 

Two asymmetric affine connections can be defined by using the ennuple, namely 

and 

so that 

Covariant differentiation with respect to haay is denoted by a single line I. 
A tensor Caay is defined by 

cas, = Aagy-{iv) = hiahiyiB 

where the semicolon denotes covariant differentiation with respect to the Christoffel 
bracket connection {$,I. If follows that when CaB7 = 0, the space is flat; the converse 
is true only if we use the 'proper ennuple'. Note that C,,, = g a r C ~ a v  is antisymmetric 
in the first and third suffixes: From CUB,, we can form a vector C, = Ca,, = - C,,". 

2. Divergence theorems 
In  the usual formulation of general relativity theory the field equations are ob- 

tained by an action principle in which the variation of a scalar density with respect 
to a small variation of the metric tensor g,fl is considered. It is well known that such 
a variation produces a symmetric tensor B,, which is such that Baflio = 0 (Eddington 
1924, $ 61). We will now establish the corresponding result for variations with 
respect to small variations of the ennuple hi". 

Let L be an invariant function of the hi, and their derivatives and let h be the 
determinant of hi,. It follows that h 5: 1I-g.  Define the invariant 

J = Lh d4x 

where d4x = dxl dx2 dx3 dx4, over the domain D of space-time bounded by a 
hypersurface S. Consider the variation of J due to a small variation in the hi, in 
such a way that the variation of the ennuple and its derivatives vanish on the boundary 
S. Then it is easily shown that 

8.7 = 8 1 Lh d4x = 1 hPi"8h,, d4x 

D 

D D 
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where Pia is the variational derivative of L with respect to his, that is 

If we suppose that the variation Sh,, arises merely from a coordinate transforma- 
tion then an argument analogous to that given by Eddington (1924 5 61) leads to 

S J  = j 
D 

This vanishes under arbitrary variations Sxa so 

If we write PDa = hiRP2" this becomes 

that is 

that is 

since A;, - {i7> =[CY, = 0. Hence we have theorem 1 : 
The variational derivative 

of an invariant function L of the h,, and their derivatives satisfies the vanishing diver- 
gence equation 

PpCqu = 0 

where Pau = htBPta and the line denotes covariant differentiation with respect to 
the asymmetric affine connection Affa = h,ah4,,B. 

Note that it does not follow that POclp = 0 since gaaly # 0. 
If the Lagrangian density of matter, including all nongravitational fields, is added 

to L then, in the usual way, the field equations resulting from the action principle 
will be 

p t Z  = kTia 

that is 
Pjja = kT5" (3) 

where k is a constant and TBa is the energy-momentum tensor of matter and other 
fields. It follows from (2) that Tpa satisfies 

= 0. (4) 

In  general relativity the usual conservation law = 0 is imposed as a co- 
variant generalization of the law Tjjn,, = 0 in special relativity. Equation (4) is a 
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different covariant generalization of the special relativistic law; in the absence of 
gravitation, that is in a flat space-time, it is easily seen from (1) that (4) reduces to 
TBa,, = 0 if we use Cartesian coordinates and the proper ennuple. 

Now equation (1) can be written in the form 

Pfl",, + {iy)Ppa - (;e)Py PYaCyfla = 0 
and since CYBa is antisymmetric in y,  U it follows that the last term is zero if PRa is a 
symmetric tensor. Hence we have theorem 2: 

If PRa is a symmetric tensor then it satisfies the divergence equation 

P4?, = 0. 

Hence if, for the usual reasons, the energy-momentum tensor is required to be 
symmetric, it will satisfy the covariant divergence equation Tpa;, = 0. The field 
equations (3) will then have the form 

where the square and curved brackets denote the antisymmetric and symmetric 
parts respectively. 

3. Derivation of the field equations 
In PP, invariants bilinear in the first derivatives of the ennuple field are constructed 

and a linear combination of them is used as the most general Lagrangian L. I t  is 
found that there are only seven possible invariants one of which is a pure divergence 
and, of the others, only four are independent, namely 

L, = C @ W a a y  
L, = CffW&4 
L,  = C"C, 
L4 = €afiY6C,CByb 

where caBYb is the Levi-Civita tensor density. (These are not the four invariants used in 
PP but are linear combinations of them which give simple expressions in our 
notation.) 

By carrying out the variations 

where the ennuple components hi, are the quantities to be varied, we find the following 
field equations corresponding to L1, L2, LB, L4 respectively 

D," = k,TUv (6 )  

E," = k2TNV (7) 

F,,' = k,TUv 

H,Lv = k4TUv. 
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The  most general field equations will thus be of the form 

where a,, a2, a3, a4 are constants. 
Note that the Ricci scalar is given in terms of Cagy by 

R = C""C,,~-C"C,-2C"~,. 

If we consider the variation 

6 Rh d4x 

then the last term of (15) contributes nothing since it is a divergence and we obtain 

-2Gi = E;- Fl (16) 
where G i  is the Einstein tensor. Thus, as expected, the usual field equations of 
general relativity are a special case of the field equations (14). 

4. Weak field approximations 
Before attempting to find solutions of the field equations we will investigate their 

weak-field approximations. For this purpose we follow Kilmister in using an almost 
Cartesian system in an almost Minskowskian space-time and choosing the ennuple 
to be (almost) the simplest diagonal form, that is, we choose it to be (almost) the proper 
ennuple. I n  this case we may write 

and 

where both K~~ and eta are small and K~~ is symmetric. This choice of ennuple ensures 
that CffBy, which is zero for the proper ennuple in a flat space, is small in the almost 
A at space. 
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We then have 
g E 4  = - KffB 

from which, to the first order in small quantities 
@4 = U6 4 E  7 77 % E *  

As usual we impose the de Donder condition 

gffB(;B) = 

which leads to 

1 Y E  a 
K 4 y v B  = 27 u,c' 

The ennuple must satisfy 

so from (18) we find that 
77"hiuhjfi = 7lr0 + ~ a o  

+€flc! = KaB 

where 
tensor of a static space-time will also be time-independent. 

= 8iu'iB. We assume, as in I, that the ennuple corresponding to the metric 

Applying this to the field tensor D," given by (10) we find that 

D,, = -2UKuv - 3 % v f  U%, -3~ ,a , f f " -~ ,u .u ,+~" , ,u , - -u , ,a~~ 

For a static metric this gives 
D,, = 2 v 2 K 4 4  

so that the vacuum field equations D,, = 0 imply that Laplace's equation is satisfied 
if we make the usual identification K~~ = 24/c2. 

Consider now the equations D,, = k,T,,. In  a static space-time, with matter 
but no internal forces we haye 

(K, p not both 4). 4 T t  = pc2 and T ,  = 0 

For a weak field and almost Cartesian coordinates the only covariant component, to 
the first order, is T 4 4  = pc2. Then Dq4 = klT44 implies 

4 
- v2+ = klpc2 
C 2  

and this is Poisson's equation V2+ = 4nyp if kl = 165ry/c4 so that field equations are 

1 6 ~ y  
c 4  

D,, = - TUV . 
By an identical argument we find that equation (7)  gives Laplace's equation in the 

absence of matter and Poisson's equation in matter provided that we make the 
identification 
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Equation (8) leads to OK = 0 in vacuo which imposes no restriction on so 
this equation does not lead to either Laplace’s equation or Poisson’s equation. 
Equation (9) is identically zero in the weak-field approximation. 

Hence we have that the field equations (6), (7) are the only ones which individually 
can be used to describe the gravitational field. It follows that in the general field 
equations (14) we must have either a, # 0 or a2 # 0 for the equations to be suitable 
for the description of the gravitational field. 

In  the next section we will be concerned with the field equation 

EiiV - aF,, = k Tu, (21) 
where a is a constant. We will now investigate the weak field approximation of these 
equations. From (16) equations (21) can be written in the form 

Gfiv-*( l -a)FUv = -$kTuv (22) 

so that when a = 1 we have the Einstein equations. For a weak field (21) becomes 

-a~ltV(2@’,ue - OK) + a ( 2 ~ ‘ v , u p  - ~ , v , > -  

Contracting this expression and using (20) we obtain for a vacuum field 

( 1 - 3 a ) ~ ~ - ( l - ~ U ) K ~ ’ , , ~  = 0 

so that, if a # 4, equation (19) gives 

O K  = KueSufl = 0. 

Taking the (4, 4) component of (21) for a static vacuum field 

- n~~~ - ~ U E ‘ ’ , ~ ~  + a 3 K  = 0 E44 - aF4, 
that is 

that is 

so Laplace’s equation is satisfied. 

- n K 4 4 f 4 a E K  = 0 

O K 4 4  = 0 

In  matter T,, = TllU = pc2 to the first order and we find 

(I  - 3a)( q~ - Kue,ue) = kpC2 

from which we obtain, if a # 4 
2a-  1 
3a- 1 

- O K 4 4  = - kpc2 

that is 

This is Poisson’s equation provided that 

pc4 .  

(24) 

(2.5) 

85-y 3a- 1 A = - -  
c4 2a- 1’ 
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There are two special cases to consider, namely a = 8 and a = 6. When a = 8 
we see from (27) that we can obtain Laplace's equation but not Poisson's equation, 
so that the field equations with a = can describe a vacuum field but not a material 
distribution. When a = + we see from (26) that K = 0, so again the field equations 
cannot describe a matter distribution. For a vacuum field we cannot find the 
relation (25) since (23) vanishes identically and we are left with only the 
equation (24), that is 

It follows that the field equations with a = 4 reduce to Laplace's equation if, and 
only if, the additional restriction OK = 0 is applied. 

Since in this article we shall be concerned only with vacuum solutions of the 
field equations, the two cases a = + and a = Q will be considered as being acceptable. 

5. Explicit form of the field equations 

space-time of the form 
Consider first the general field equations (14) in a static spherically symmetric 

ds2 = e2B dt2 - e2v(dr2 + r2  do2 + y 2  sin20 d$2) (29) 
where ,U, v are functions of Y only and the velocity of light has been given unit value. 
Following the argument of I we use an ennuple of the form 

where 0 is the matrix 
hi" = O Q F  

s inecos+  cosOcos+ -s in$ 0 

0 0  
0 1  

sin 0 sin + cos 0 sin + cos + 
cos e -sin 6' 

0 0 

H34(P3)H24(P2)H14(P1) 

Q, is the product 

in that order of the matrix 
rcoshp, 0 0 s inhp , l  

representing rotations in the (x, t )  plane and two similar matrices HZ4(p2) ,  H34(P3) 
representing rotations-in the (y ,  t )  and (x, t) planes and F is the matrix 

0 
1 
- e -v  
Y sin0 
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For a static space-time we assume that pl, p2, p3 are functions of I only. The  reasons 
for adopting an ennuple of this form are explained at length in I. 

With this tetrad the nonzero components of the tensor C@,, are found to be 

c112, c122, c113, C123r c133, c114, c124, c134, c144, 

c211, c221, c213, c223, c233, c214, c224, c 2 3 4 ,  

C311, C321, C331, C312, C322, C332, C314, C334, 

C411, C421, C431, C441, C412, C422, C432, c 4 1 3 ,  C433. 
We can now compute the sixteen vacuum field equations (14) from the values of 

Cagy. These field equations are complicated; however after a tedious but straight- 
forward calculation using the (2, 2),  (2, 3) and (2, 4) equations we find that 

B Z  = is3 = 0 
as in I. Putting p2, p3 equal to zero the following results are found: 

Huv = 0 (30) 
and 

The  second result means that 

Caa YC@4r = 2CaRYCayB 

D U V  = 2Euv 
and it follows from (30) and (32) that the general field equations (14) simplify to the 
form (21), that is 

Euy - aFuv = kTUv 
where K is given by (28), or to the equivalent equation (22). 

Note that the relation (31) is not an identity and appears to be due entirely to the 
choice of ennuple. This choice of ennuple thus leads to a remarkable simplification 
of the field equations. 

In  a vacuum field the equations (22) become 

G,, - &( 1 - a)Fuv = 0 
which can be written as 

Ruv -+g,,R - (1 - a)(C,Cauv - CViu ++g,,( CaCu + 2C@,,)) = 0 (33) 
from which me obtain the field equations in the form 

Ruv = (1 - a)(CaCauv - G;L4 -+g9UYca;@). (34) 
The  only independent field equations which are not identically zero are the (1, l), 
(2, 2), (4, 4) and (1, 4) equations which are respectively: 

CL! 4(3a - l)pR+ (3a - I ) / + + ( ,  + 1)pt2  ++(a- 3)p’v’+ (1 - a ) P  +2(a- 1) - 
Y 

V I  1 Y’ V‘  
+(a+ 1) - + ( 1  - a )  - + (1 - a )  - cosh/3, + ( a -  1) - coshis, + ( a -  1),81’z 

r Y 2  Y r 
1 1 
Y Y2 

+ ( 1  -a)  -isl’ sinhp, + (a -  1) - coshp, = 0 (35) 
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ELI V’ 1 
Q(a-1)p”+av”+&(a-1)11.’2+&(3a-1)~’v’+aV’2+(2a-1)- +3a- +(1-a)- 

1’ Y P 2  

1 V) 
+(a- 1)- Y 2  coshp1 +(a- 1) -cosh r p1 = 0 (36) 

PI V’ 
+(a+ l)p”+(a- l )~”+*(a+ 1 ) ~ ”  +&(3a- l )p’~’+(a-  1 ) ~ ’ ~  +2a - +3(a-  1) - 

P f 

1 11.’ V’ 1 
+(a- 1)-- + (1 -a) - coshp1 + (1 -a)  - coshp1 + (1 -a)  -cosh 

r2 f Y r2  
1 

+(l-a)-/3,’sinhp, Y = 0 (37) 

No general solution of these equations has been found, so, as an additional 
simplification, we will seek only those solutions for which p1 = 0, that is, in the termin- 
ology of I, we will seek solutions that are reducible to zero-parameter solutions. 
Putting p1 = 0 equations (35) to (37) become: 

P‘ V’ 
& ( 3 a - 1 ) $ ’ + ( 3 a - l ) v ’ f + $ ( a + 1 ) ~ ’ ~ + ~ ( a - 3 ) p ’ v ’ + ( 1  -a)vf2+(a-1)-+2a- = 0 

(39) 
P Y 

ll’ V‘ 
~ ( a - l ) p ” + ~ ~ ” + $ ( ~ - 1 ) ~ ’ ~ + ~ ( 3 a - l ) p ’ ~ ’ + ~ ~ ‘ ~ + ( 2 ~ - 1 ) -  + ( 4 ~ - 1 ) -  = 0 (40) 

I f  Y 

ll’ V 
+ ( a + l ) p ” + ( a - l ) ~ ” + ~ ( ~ + l ) p ’ ~ + ~ ( 3 ~ -  l)p’~’+(a- l ) v ” + ( ~ +  1)-+2(a- 1)- = 0. 

r P 
(41) 

Note that when a = 1 the equations (34) become the Einstein vacuum field 
equations which give the Schwarzschild solution. In  this case (38) vanishes identically 
for all values of PI which illustrates the point that in this case the Lagrangian and the 
resulting field equations are functions of the metric tensor rather than functions of the 
ennuple. We seek solutions of equations (39) to (41) for which a f 1. 

6. Solutions of the field equations 
The  following solutions of equations (39) to (41) have been found: 
(i) a = 0: 

m 3m2 213 - 42/2 2/2m/4r 
)) Y 8r2 1 + (ml2r) 

e2v = (1 + - + -) exp {F tan-1 ( 
where m is a constant. 

(B) e2fi = r‘8/3 = r - 4 / 3 .  
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(ii) a = Q: 

(iii) a = +%: 
p = v. 

(iv) a = 4: 

where 6 is a constant. 

where m is a constant. 
b2 
r2 

e2V = - (c)  P = 0 

where b is a constant. 

(v) a = 3 :  

These solutions may be grouped as follows : 

Type I. Conformally $at space-times 
From (ii), when a = 4 the solutions are conformally flat space-times. If we 

consider the field equations for the case when p, v are each functions of r and t ,  then 
we find that the additional terms in equations (39) to (41) each have a factor (1 - 3a), 
so that when a = 4 the time-dependent solutions are again conformally flat space- 
times. Since any spherically symmetric conformally flat space-time can be written 
in the form 

ds2 = e2h(dt2 - dr2 - r2  do2- r2  sin20 d+2) 

where p = p(r ,  t ) ,  it follows that every spherically symmetric conformally flat 
space-time is a solution of the field equations (22). This result must be due to the 
choice of ennuple since the equations (22) with a = 4 are not sufficient to ensure the 
vanishing of the Weyl tensor. 

It is easily shown that equations (39) to (41) admit conformally flat solutions 
only when a = 4, and it can also be shown that if we use equations (35) to (38) 
taking f 0, then the same results appear when we use the fact a space-time of the 
form (29) with p = p(r ,  t ) ,  v = v(r, t )  is conformally flat if 

exp(p-v) = a+br2 
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where a, b are functions of t only. Hence we have the curious result that when a = Q 
an ennuple can always be found such that every conformally flat spherically symmetric 
space-time is a solution of the generalized field equations and this ennuple gives 
conformally flat solutions only when a = 5. 

Amongst these conformally flat solutions are the static Robertson-Walker models 

R2 
ds2 = dt2- (dr2+r2 d02+r2 sin2€J d+2). 

(1 + kr2/4)2 

When K = + 1, this is the Einstein universe and when k = - 1 this is an open model. 
The  latter was found in I as a solution of Kilmister's equations Caa7;CI = 0 and, as in I, 
these are solutions of the field equations if 13, # 0 or if the space-time is taken to be 
nonstatic. Since the Robertson-Walker metric corresponds to a homogeneous, 
isotropic space-time it follows that solutions both represent curved empty space- 
times, in disagreement with Mach's principle. 

Two other conformally flat solutions are worth noting. Firstly the space-time 

ds2 = (1 - ( dt2 - dr2 - r2 de2 - r2 sin2€J d+2) 

which arises in scalar gravitational theories (see Schild 1962) and secondly 

a2 
Y2 

ds2 = - (dt2 - dr2 - r 2  do2 - r2 sin%' d$2) 

which is the solution of the Einstein-Maxwell equations discovered by Robinson (1959) 
and which has been shown to represent the field of a repelling particle by Lovelock 
(1967). Hence the generalized field equations admit solutions with nongravitational 
characteristics. 

Type 11. Asymptotically flat space-times 
Solutions (itz), (iiiA), (ivB), (v) are of this type as well as some solutions of type I, 

such as (42). It can be shown (Phillips 1969) that unless a = 1, which gives the 
Schwarzschild solution, no solution of equations (39) to (41) can agree with the 
Schwarzschild solution in regard to the three tests of general relativity. If we denote 
the values given by the Schwarzschild solution for the three tests by unity then the 
proportionate values given by the solutions found here are 

Solution Advance of Light-ray Red shift 
perihelion deflection 

B 1 ( i 4  2 4  

(ii, 42) - &  0 1 
1 (iiitz) 4 

0 (iVB) 0 P 

0 1 

__ 1 1  

3 
B 
1 

4 -- 11 - 

8 

(4 1 5  

Type 111. Recurrent space-times 

satisfy the relation 
Solutions (iB), (iiiB) and (ivD) are found to be recurrent space-times, that is, they 

RCi4yd;c = Kr .Ra4vb  
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where the recurrence vector K€ is given by 

where 
3a- 1 
a-3 

m = -* 

609 

(44) 

In  fact, it is found that for any value of a other than a = 1 and a = 3, there is a 
recurrent space-time solution of equations (39) to (41) with recurrence vector given 
by (43). These space-times are of the form 

ds2 y - Z ( m f l )  dt2 - yZ(m-l)(dyz + y2 do2 + y2 sin28 d+2) 

where m is given by (44). 
The  physical interpretation, if any, of these solutions is quite obscure ; they 

cannot represent the gravitational field of a massive body since the orbits of particles 
are not approximately ellipses. 

Type IV 
Solution (ivc) is precisely the zero-parameter solution of Kilmister’s equations 

found and discussed in I. It was shown that some of the properties of this space-time 
were consistent with an empty space-time with curvature due to the presence of 
distant matter, but some of its other properties did not admit a reasonable physical 
interpretation. 

Type V 

are not approximately ellipses and the physical interpretation is obscure. 
Solution (iVA) does not fall into any of the above categories. The  orbits of particles 

7. Conclusions 
One of the significant features of the generalized field equations formulated here 

is the embarrassment of riches provided by the large number of solutions that have 
been found so far. It is particularly noticeable that the largest numbers of solutions 
have been found for the two values, a = + and a = 3, for which the field equations 
can only describe vacuum fields. 

Many of the solutions found here can be rejected on the grounds that they cannot 
describe the gravitational field of a massive body. Those that can describe such a 
field predict results for the three tests which differ considerably from those of the 
Schmarzschild solution. However, the solutions found here are presumably only a 
few of the many possible solutions that can be obtained for different values of a and 
different ennuples, so it is possible that one solution may exist that agrees with 
observational evidence without having those properties of the Schwarzschild solution 
to which Kilmister objected. These generalized field equations are aesthetically less 
satisfying than the Einstein equations since there is no unique solution and the choice 
of solution will have to be made on the observational evidence, but they are none the 
worse for that. 
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One question that we have been unable to answer and which may be worth 
considering is: Is there any value of a, other than a = 1, which leads to a unique 
solution for the field equations-even for the equations (39) to (41) obtained from 
the restricted ennuple? 
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